Contents lists available at ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

Short communication

Structure and properties of Li₂S-P₂S₅-P₂S₃ glass and glass-ceramic electrolytes

Keiichi Minami^a, Akitoshi Hayashi^{a,*}, Satoshi Ujiie^b, Masahiro Tatsumisago^a

^a Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuencho, Naka-ku, Sakai, Osaka 599-8531, Japan ^b The Kansai Electric Power Co., Inc., Amagasaki, Hyogo 661-0974, Japan

ARTICLE INFO

Article history: Received 1 July 2008 Received in revised form 10 September 2008 Accepted 15 September 2008 Available online 21 September 2008

Keywords: Solid electrolyte Lithium battery Sulfide Conductivity Glass-ceramic All-solid-state battery

1. Introduction

High lithium ion conductive solid electrolytes have been researched for many years. In a lot of lithium ion conductive solid electrolytes, sulfide-based solid electrolytes show high conductivity more than 10^{-4} S cm⁻¹ at room temperature [1,2]. We have investigated structure and properties of the Li₂S-P₂S₅ solid electrolytes which were prepared by the mechanical milling [3] and the melt quenching techniques [4]. Recently, the 70Li₂S·30P₂S₅ (mol%) glass-ceramic electrolyte has attracted much attention because of its high lithium ion conductivity. The conductivity of 70Li₂S·30P₂S₅ mechanically milled glass was 5.4×10^{-5} S cm⁻¹ at room temperature. Superionic conductive Li₇P₃S₁₁ crystal [5] was precipitated by crystallization of the glass and the obtained glass-ceramic showed the high conductivity of 3.2×10^{-3} S cm⁻¹ at room temperature [3].

We reported that the substitution of a small amount of P_2O_5 for P_2S_5 at the composition $70Li_2S\cdot 30P_2S_5$ is effective in enhancing the conductivity of glass and glass–ceramic [6]. Moreover, electrochemical stability of the glass–ceramic against lithium metal was improved by the P_2O_5 substitution [7]. The improvement of the properties for the glass–ceramic would be due to the incorporation of oxygen into the $Li_7P_3S_{11}$ crystal. Machida et al. have

ABSTRACT

High lithium ion conducting $70Li_2S \cdot (30 - x)P_2S_5 \cdot xP_2S_3$ (mol%) glasses and glass–ceramics were prepared by the mechanical milling method. Glasses were obtained in the composition range of $0 \le x \le 10$. The substitution of P_2S_3 for P_2S_5 promoted the formation of the $P_2S_6^{4-}$ units in the glasses. The conductivity of the glass increased with an increase in P_2S_3 contents up to 5 mol% and the glass with 5 mol% of P_2S_3 showed the conductivity of 1×10^{-4} S cm⁻¹ at room temperature. In the case of glass–ceramics, the conductivity increased with an increase in P_2S_3 contents up to 1 mol%, and the superionic conducting $Li_7P_3S_{11}$ crystal was precipitated in the glass–ceramic. The glass–ceramic with 1 mol% of P_2S_3 showed the highest conductivity of 3.9×10^{-3} S cm⁻¹ at room temperature.

© 2008 Elsevier B.V. All rights reserved.

reported that the substitution of a small amount of P_2S_3 for P_2S_5 increased the conductivity of the 75Li₂S·25P₂S₅ glass [8]; the obtained glass with 5 mol% of P_2S_3 showed the highest conductivity of 6.2 × 10⁻⁴ S cm⁻¹ at room temperature. Enhancement of conductivity of both glass and glass–ceramic electrolytes is expected by substituting P_2S_3 for P_2S_5 at the composition of 70Li₂S·30P₂S₅.

In this work, the $70\text{Li}_2\text{S} \cdot (30 - x)\text{P}_2\text{S}_5 \cdot x\text{P}_2\text{S}_3 \pmod{3}$ glasses and glass–ceramics were prepared by mechanical milling. Effects of substitution of P_2S_3 for P_2S_5 on the structure and properties of the glass and glass–ceramic electrolytes were investigated.

2. Experimental

The 70Li₂S·(30 - x)P₂S₅·xP₂S₃ (mol%) glasses were prepared by the mechanical milling method. Reagent-grade Li₂S (Idemitsu Kosan, 99.9%), P₂S₅ (Aldrich, 99%) and P₂S₃ (Aldrich, >99%) crystalline powders were used as starting materials. The mixture of these materials was mechanically milled at room temperature by a planetary ball mill apparatus (Fritsch Pulverisette 7) using an alumina pot (volume of 45 ml) with 10 alumina balls (10 mm in diameter). A rotating speed was 370 rpm and the milling time was 20 h. The glass–ceramics were prepared by heating the glasses at above crystallization temperatures. All processes were performed in a dry Ar atmosphere. XRD measurements (Cu K α) were conducted using a diffractometer (Bruker AXS, M18XHF²²-SRA). Raman spectra of the glasses were measured with a Jasco NR-1000 Raman spectrophotometer using the 514 nm line of an Ar⁺ laser

^{*} Corresponding author. Tel.: +81 72 254 9334; fax: +81 72 254 9334. *E-mail address:* hayashi@chem.osakafu-u.ac.jp (A. Hayashi).

^{0378-7753/\$ -} see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.jpowsour.2008.09.044

beam. Differential thermal analyses (DTA) were performed by using a Rigaku thermal analyzer (Rigaku, Thermo-plus 8110). The heating rate was $10 \,^{\circ}$ C min⁻¹.

Ionic conductivities were measured for the pelletized samples with 10 mm in diameter and about 1 mm in thickness. Carbon paste was painted as electrodes on the both faces of the pellets. Two stainless steel disks coupled with gold wires were attached to the pellets as a current collector. The obtained 2-probe cell was packed in a glass tube and then the tube was sealed with a silicone stopcock equipped with needle valves, platinum electrodes and a thermocouple. Ac impedance measurements were carried out for the cell using dry Ar gas flow by an impedance analyzer (Solartron, 1260) in the frequency range of 10 Hz to 8 MHz. The temperature range of the measurements was from 25 °C to above the first crystallization temperature of glass samples.

3. Results and discussion

Fig. 1 shows the XRD patterns of mechanically milled samples. Halo patterns were observed for the samples in the composition range $0 \le x \pmod{30} \le 10$ in the system $70\text{Li}_2\text{S} \cdot (30 - x)\text{P}_2\text{S}_5 \cdot x\text{P}_2\text{S}_3$, indicating that the amorphous samples were obtained. On the other hand, the diffraction peaks attributable to the Li₂S crystal remained at the compositions with 20 and 30 mol% of P₂S₃ although halo patterns were basically observed. The peak intensities of Li₂S crystal increased with increasing P₂S₃ contents. Glass transition phenomena were observed from the DTA analysis in Fig. 3 of obtained amorphous samples and thus they are in glassy state.

Raman spectra of the $70Li_2S(30 - x)P_2S_5 \cdot xP_2S_3$ glasses are shown in Fig. 2. Two peaks were observed at 407 and 420 cm⁻¹

Fig. 1. XRD patterns of the 70Li_2S-(30 – $x)P_2S_5 \cdot xP_2S_3$ samples prepared by mechanical milling for 20 h.

Fig. 2. Raman spectra of the $70Li_2S\cdot(30-x)P_2S_5\cdot xP_2S_3$ glasses prepared by mechanical milling for 20 h.

in the spectrum of the 70Li₂S·30P₂S₅ glass (x=0). Tachez et al. reported that the two peaks are attributed to the P₂S₇⁴⁻ units and the PS₄³⁻ units, respectively [9]. The P₂S₇⁴⁻ units gradually disappeared and P₂S₆⁴⁻ units (382 cm⁻¹) with P–P bond were produced by substituting P₂S₃ for P₂S₅. It was revealed that the increase of the P₂S₃ content led to the decrease of P₂S₇⁴⁻ units and the formation of P₂S₆⁴⁻ units.

DTA curves of obtained glasses are shown in Fig. 3. Two exothermic peaks were observed in the curve of the 70Li₂S·30P₂S₅ glass (x = 0). The peak at around 240 °C is attributable to the crystallization of the superionic conductor Li₇P₃S₁₁ and that at around 420 °C is attributable to the transformation of the Li₇P₃S₁₁ crystal to the Li₄P₂S₆ and thio-LISICONIII analog crystal [10]. By substituting P₂S₃ for P₂S₅, the crystallization peak at around 240 °C gradually disappeared and a new crystallization peak at around 280 °C attributable to the transformation peak at around 280 °C attributable to the crystallization peak at around 280 °C attributable to the crystallization peak at around 280 °C attributable to the crystallization peak at around 420 °C was shifted to the lower temperature region at the compositions x < 10, suggesting that the Li₄P₂S₆ crystal was easily produced in the glass–ceramics.

Fig. 4 shows the XRD patterns of the 70Li₂S· $(30 - x)P_2S_5 \cdot xP_2S_3$ glass-ceramics prepared by heating the glasses at temperatures higher than the first crystallization temperature by 30 °C. The superionic conductive Li₇P₃S₁₁ crystal was precipitated in the glass-ceramics at the compositions up to 5 mol% of P₂S₃ contents. However, peak intensity of the Li₇P₃S₁₁ crystal decreased with increasing the P₂S₃ contents and almost all the peaks of Li₇P₃S₁₁ crystal disappeared in the glass-ceramic with 10 mol% of P₂S₃. The crystal analogous to the thio-LISICONIII phase in the Li₄GeS₄-Li₃PS₄ solid solution [11] was also observed in the glass-ceramics with more than 1 mol% of P₂S₃. The exothermic peak at around 280 °C as shown in Fig. 3 is therefore attributable to the crystallization of

Fig. 3. DTA curves of the $70Li_2S(30 - x)P_2S_5 \cdot xP_2S_3$ glasses prepared by mechanical milling for 20 h.

thio-LISICONIII analogue crystal as mentioned above. Peak intensity of low lithium ion conducting $Li_4P_2S_6$ crystal increased with increasing P_2S_3 contents because of increase of the $P_2S_6^{4-}$ units in mother glass and decrease of precipitation temperature of the $Li_4P_2S_6$ crystal. Decrease of the $P_2S_7^{4-}$ units and increase of the $P_2S_6^{4-}$ units in the glass would cause disappearance of the $Li_7P_3S_{11}$ crystal and appearance of the $Li_4P_2S_6$ crystal and thio-LISICONIII analog crystals.

Fig. 5 shows the composition dependence of the ambient temperature conductivity and activation energy for conduction of the $70\text{Li}_2\text{S}\cdot(30 - x)\text{P}_2\text{S}_5\cdot x\text{P}_2\text{S}_3$ glasses and glass-ceramics. In the case of glass, the conductivity increased with an increase in P₂S₃ contents up to 5 mol% and the glass with 5 mol% of P₂S₃ showed the highest conductivity of 1.0×10^{-4} S cm⁻¹ at room temperature. The enhancement of conductivity would be due to the "mixed anion effect" which is observed in the glasses containing two or more kinds of anion species [8,12]. The 70Li₂S·25P₂S₅·5P₂S₃ glass consisted of the $P_2S_6^{4-}$ anion in addition to the $P_2S_7^{4-}$ and PS_4^{3-} anions, and thus the glass showed higher conductivity than the 70Li₂S·30P₂S₅ glass. In the case of glass-ceramics, the conductivity of all the glass-ceramics increased by crystallization of the glasses. The conductivity increased with an addition of 1 mol% P_2S_3 , and the glass-ceramic with 1 mol% of P_2S_3 showed the highest conductivity of $3.9 \times 10^{-3}\,S\,cm^{-1}$ at room temperature. The conductivity gradually decreased with further increasing P₂S₃ contents. Conductivity of the glass-ceramic mainly depends on the precipitated crystal and then the decrease of the conductivity is due to the precipitation of the Li₄P₂S₆ crystal in the glass-ceramics. On the other hand, the superionic conducting Li₇P₃S₁₁ crystal was precipitated in the glass-ceramics with a small amount of P₂S₃ and therefore the glass-ceramics showed high conductivity of over 10^{-3} S cm⁻¹. It has not been clarified the reason why the glass-ceramic with 1 mol% of P₂S₃ exhibited higher conductivity

Fig. 4. XRD patterns of the $70Li_2S \cdot (30 - x)P_2S_5 \cdot xP_2S_3$ glass-ceramics prepared by heat treatment of the glass at above crystallization temperature.

than the $70Li_2S \cdot 30P_2S_5$ glass-ceramic. Incorporation of the trivalent phosphorus into the $Li_7P_3S_{11}$ crystal is a possible reason for the conductivity enhancement; detailed structural analysis of the glass-ceramics is needed for further discussion.

Fig. 5. Composition dependence of room temperature conductivity and activation energy for conduction of the $70Li_2S \cdot (30 - x)P_2S_5 \cdot xP_2S_3$ glasses and glass–ceramics.

4. Conclusions

The 70Li₂S $(30 - x)P_2S_5 xP_2S_3$ glasses in the composition range $0 \le x \le 10$ were prepared by the mechanical milling method. The $P_2S_7^{4-}$ units gradually disappeared and the $P_2S_6^{4-}$ units were formed by substituting P₂S₃ for P₂S₅. The substitution of P₂S₃ for P_2S_5 promoted the formation of the $P_2S_6^{4-}$ units in the glasses. Conductivity of the glass increased with increasing P₂S₃ contents and the glass with 5 mol% of P₂S₃ showed the conductivity of $1\times 10^{-4}\,S\,cm^{-1}$ at room temperature. The glass–ceramics were obtained by heating the glasses at above crystallization temperature. The glass-ceramics with up to 5 mol% of P₂S₃ showed high conductivity of over 10^{-3} S cm⁻¹ because of the precipitation of the superionic conducting Li₇P₃S₁₁ crystal. The Li₄P₂S₆ crystal instead of the Li₇P₃S₁₁ crystal was precipitated by substituting further amounts of P₂S₃ for P₂S₅. The glass-ceramic with 1 mol% of P₂S₃ showed the highest conductivity of 3.9×10^{-3} S cm⁻¹ at room temperature. It was found that the substituting a small amount of P_2S_3

for P₂S₅ is effective in enhancing conductivity of the glass and glass–ceramic electrolytes.

References

- [1] R. Mercier, P. Malugani, B. Fahys, G. Robert, Solid State Ionics 5 (1981) 663.
- [2] A. Pradel, M. Ribes, Solid State Ionics 18-19 (1986) 351.
- [3] F. Mizuno, A. Hayashi, K. Tadanaga, M. Tatsumisago, Adv. Mater. 17 (2005) 918.
 [4] K. Minami, F. Mizuno, A. Hayashi, M. Tatsumisago, Solid State Ionics 178 (2007) 837.
- [5] H. Yamane, M. Shibata, Y. Shimane, T. Junke, Y. Seino, S. Adams, K. Minami, A. Hayashi, M. Tatsumisago, Solid State Ionics 178 (2007) 1163.
- [6] K. Minami, F. Mizuno, A. Hayashi, M. Tatsumisago, J. Non-cryst. Solids 354 (2008) 370.
- [7] K. Minami, A. Hayashi, M. Tatsumisago, Solid State Ionics 179 (2008) 1282.
- [8] N. Machida, H. Yamamoto, S. Asano, T. Shigematsu, Solid State lonics 176 (2005) 473.
- [9] M. Tachez, J.P. Malugani, R. Mercier, G. Robert, Solid State Ionics 14 (1984) 181.
 [10] F. Mizuno, A. Hayashi, K. Tadanaga, M. Tatsumisago, Electrochem. Solid-State
- [10] F. MIZUNO, A. HAYASHI, K. IAGANAGA, M. IATSUMISAGO, Electrochem. Solid-State Lett. 8 (2005) A603.
- [11] R. Kanno, M. Murayama, J. Electrochem. Soc. 148 (2001) A742.
- [12] M. Tatsumisago, T. Minami, Mater. Chem. Phys. 18 (1987) 1.